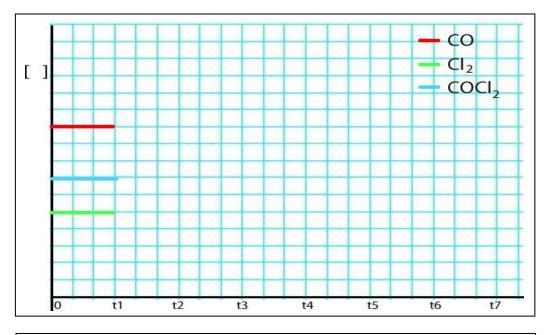
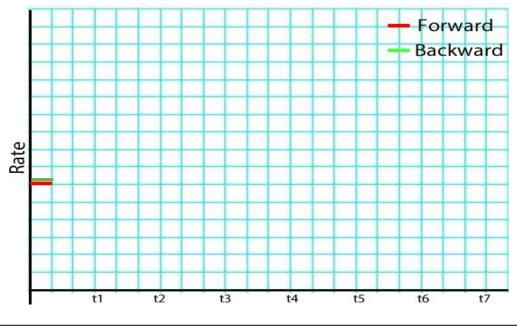
Quiz 7 Revision

Equilibrium

Consider the following reaction

 $CO(g) + Cl_2(g) \leftrightarrows COCl_2(g) \Delta H = -ve$


In a 2.00 litre reaction vessel a mixture of 2.00 mol of CO and 1.00 mol of Cl_2 gases is placed and allowed to reach equilibrium. When equilibrium was finally reached, at 200 °C, it was found that the mixture contained 0.600 mol of $COCl_2$.


a. Give the expression for Qc

- b. Calculate the equilibrium constant for this reaction at 200 °C. Give your answer to the right number of significant figures and the correct unit.
- c. Complete the table below.

Stress on the system whilst	Кс	Qc	Reaction response
at equilibrium			
			No No
			response
Inject more COCl ₂ into the			
reaction vessel at constant			
temperature			
Remove Cl ₂ from the			
reaction vessel at constant			
temperature			
Double the volume of the reaction vessel at constant			
temperature			
Increase the temperature of			
the reaction vessel			
Addition of a catalyst at			
Addition of a catalyst at constant temperature			
1			

- d. The same reaction reached an equilibrium position at another unknown temperature. It concentration time graph is shown below. For each stress draw the response of the system. After each stress equilibrium is achieved before the next stress.
 - T_1 = CO gas is injected.
 - $T_2 = COCl_2$ is removed
 - T₃ = Volume is doubled
 - T_4 = Temperature decreases
 - T₅ = a catalyst is added
 - T_6 = pressure is doubled by the addition of helium gas

